
 

Appendix S1: Daphnia foraging rate is not affected by presence or density of parasites. 

 

In this appendix, we provide additional methods and results regarding the influence of parasite 

density on Daphnia foraging rate. 

 

Methods: We conducted a preliminary experiment to examine how Daphnia foraging rates 

responded to the presence and density of fungal spores. In this experiment, we estimated the 

foraging rate of Daphnia consuming algae under four treatments (N = 20 per treatment; Control 

(algae only), algae + 100 fungal spores/mL, algae + 200 fungal spores/mL, and algae + 200 µg 

Cu2+ /L [Copper is a common pollutant that can potently alter Daphnia feeding rates (Bossuyt & 

Janssen 2004; Civitello et al. 2012). We used it here as a positive control]). Because Daphnia are 

nonselective feeders, they should forage on algae and spores at equal rates. We placed 

individual, 7-day-old Daphnia (same clonal genotype as in the infection experiment) in 10-mL 

filtered lake water containing 1.0 mg dry weight S. acutus/L in 15 mL borosilicate glass test 

tubes with plastic caps. We then allowed the Daphnia to consume algae for two hours under dark 

conditions in a closed cabinet in the laboratory (approximate temperature: 21°C). We mixed the 

tubes every 15 minutes by gently inverting them. After two hours, we quickly removed all 

Daphnia and estimated the density of algae remaining (A2) using in vivo fluorometry (Trilogy 

Flourometer, Turner Designs, Sunnyvale, CA, USA). Algal density estimates obtained from 

Daphnia-free controls served as estimates of the initial density of algae (A0). We calculated the 

foraging rate of each Daphnia (f, L ind-1 day-1) following Sarnelle and Wilson (2008), 
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with container volume, V = 0.010 L, Daphnia per tube, n = 1, and time, t = 0.0833 day. 

We then tested for differences among these four treatments with ANOVA followed by post hoc 

Tukey tests to identify significantly different treatments. Three samples were lost before we 

could estimate the density of algae remaining. Therefore, we omitted these replicates from the 

analysis. 

 

Results and Discussion: Daphnia foraging rate varied significantly among the four treatments 

(ANOVA, F3,73 = 2.97, P = 0.037). The addition of 100 or 200 fungal spores/mL did not alter 

foraging rate when compared to the “Algae only” treatment (Figure S1, P = 0.50 and P = 0.98, 

respectively). In contrast, copper significantly reduced the foraging rate of Daphnia. (Figure 

S1.1, P = 0.041). The confirmed effect of this positive control suggests that this assay can detect 

changes in Daphnia foraging rates. Therefore, we conclude that neither the presence nor density 

of fungal spores alters Daphnia foraging rates.  
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Appendix figure 

  

Figure S1.1. Results of the preliminary foraging rate assay. Parasite addition (i.e., the “100 

spores/mL” and “200 spores/mL” treatments) had no significant effect on the foraging rate of 

Daphnia relative to the Control treatment. In contrast, the addition copper (“200 µg Cu/L 

treatment”), a common aquatic pollution that often reduces the foraging rates of aquatic 

invertebrates, significantly decreased Daphnia foraging rates. Foraging rates are presented as 

means ± SE. Significant differences from the “Algae only” control group are indicated by 

asterisks. 
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Appendix S2: Additional model selection methods and results for the infection experiment. 

 

Here we describe methods for parameter estimation and model selection when combining 

infection and parasite consumption data (Model Competition 2). We provide maximum 

likelihood parameter estimates for all models in both analyses. We also provide confidence 

intervals for all parameter estimates from Model Competition 2. Finally, we provide best-fit 

predictions for some models that we not presented in the main text. 

 

Additional methods for estimating parasite density in water samples 

 In order to more directly estimate Daphnia foraging rates in Competition 2 (below), we 

measured the density of spores remaining in the water (i.e., those that were not consumed) after 

the one day exposure. We collected a 40 mL sample of well mixed water from 65 replicates at 

the two highest spore densities; stained the suspension with a cotton blue-lactic acid dye; filtered 

the samples onto 25-mm nitrocellulose filters (Millipore, Billerica, MA, USA); and counted the 

spores in at least 20 fields on each slide at 200x magnification on a compound microscope. We 

also estimated the initial density of spores using 12 additional replicates containing spores but no 

Daphnia.  

 

Additional methods for model parameterization and competition 

Here we provide more complete information concerning the parameterization and 

competition of the transmission models using data from the infection experiment. We fit and 

competed the transmission models twice. For both analyses, we used maximum likelihood 



techniques to parameterize the models and standard information criteria for the competition 

(Burnham & Anderson 2002).  

Competition 1: We first fit and competed all five models using only the infection data and 

assuming a betabinomial distribution (“Infection data only,” Table 1B, Figure 1). In general, we 

followed standard maximum likelihood methods for fitting transmission models to data resulting 

from infection experiments (e.g., Hall et al. 2007; Rachowicz & Briggs 2007; Ben-Ami et al. 

2008). For each model, we determined the parameter values that best predicted the prevalence of 

infection observed across all of the treatments. To predict prevalence, we integrated each model 

for the one day duration of the infection experiment. We found analytical solutions for all 

transmission models except for the Phenomenological model (Eq. 3a-b), which we numerically 

simulated with the lsoda function in the deSolve package within R Statistical Computing 

Software (R Development Core Team 2008; Soetaert et al. 2010). Integrating each transmission 

model provided a predicted density of susceptible hosts remaining after the one day exposure, 

S(1), given the parameter values and initial densities of hosts, S(0), and parasites, Z(0). Dividing 

this prediction by the initial density of hosts, S(0), provides the predicted probability of 

successfully escaping infection, p: 
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The model predictions depended on model parameters as well as the initial densities of 

susceptible hosts, S(0), and parasites, Z(0): 
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We assumed that the observed counts of uninfected Daphnia, U, followed a betabinomial 

distribution, with the probability of successfully escaping infection, p, predicted by the model. 

The betabinomial distribution also includes an overdispersion parameter, θ, which we estimated 

along with the model parameters. The betabinomial probability density function provides a 

likelihood for a parameter set based on the model-predicted success, p, and the number of 

uninfected hosts, U, observed among the total number of hosts, N, diagnosed in a replicate: 
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Here, β(a, b) indicates the probability density function of the beta distribution with parameters a 

and b. To find the negative log-likelihood, ℒINF, for a specific set of model parameters given a 

model and the infection data, we summed the negative log-likelihood (i.e., -ln(ℓINF)) calculated 

for the counts, U and N, from each replicate tube. We obtained maximum likelihood estimates of 

model parameters by minimizing this total using the betabinomial distribution from the emdbook 

package and the mle2 function of the bbmle package in R (Bolker 2008; R Development Core 

Team 2008; Bolker 2012). 

After fitting each model, we ranked their performance with statistics derived from the 

Akaike information criterion (AIC; Burnham and Anderson 2002). The best performing model, 

by definition, has the lowest AIC value (AICbest).  Thus, we determined each model’s 

performance (AICj) relative to the best, (ΔAICj = AICj – AICbest). By definition, ΔAICbest = 0, 

and larger ΔAICj correspond to worse model performance. Generally, ΔAIC > 10 indicates poor 



model performance (Burnham & Anderson 2002). We also calculated the Akaike weight, wj, for 

each model from these AIC statistics. Akaike weights provide the relative weight of evidence in 

favor of a model among the set under consideration (Burnham & Anderson 2002). Akaike 

weights close to one indicate substantial evidence that the model performs best among the 

candidates, while wj close to zero indicate extremely little support for the model. 

 Competition 2: Next, we used an integrated modeling approach to simultaneously fit the 

three foraging-based transmission models (constant foraging, linear interference, and 

exponential interference) to the infection and parasite consumption datasets. Each of these 

models simultaneously predicts infection prevalence (as above) as well as the density of parasite 

spores remaining (i.e., not consumed) after the one day exposure. In Competition 2, we estimated 

parameters by simultaneously fitting the models to these two datasets (Integrated modeling; 

Besbeas et al. 2005; Schaub et al. 2007). Combining multiple sources of data into a single model 

facilitates better parameter estimates, particularly when certain parameters may be difficult to 

estimate accurately with only a single source of data (i.e., when parameters have low 

identifiability). This advantage likely applies here because the parasite consumption data can 

more directly inform the foraging parameters (f and cf) than can the infection counts. Here, we 

make the (relatively standard) assumption that the infection counts and parasite density estimates 

are independent. Thus, the joint likelihood (which we maximize in this simultaneously fit) is the 

product of the individual likelihoods for each dataset (or, alternatively, as the sum of the log-

likelihoods). Although this assumption of independence is violated (since these data came from 

the same replicates), simulations suggest that this violation has a minimal impact on parameter 

estimates (Abadi et al. 2010).  



 The key additional component of this simultaneous fit is a likelihood function for the 

parasite consumption data. Integrating each foraging-based transmission model also yields a 

prediction for the density of parasites remaining after the one day exposure, Z(1)Pred. The three 

foraging-based models provided different predictions for the density of parasites remaining after 

the one day exposure, Z(1)Pred: 

 Constant foraging:  ( ))0(exp)0()1( fSZZ pred −=    (Eq. S2.4a) 

 Linear interference:  ( ))0())0(1(exp)0()1( SScfZZ fpred −−=  (Eq. S2.4b) 

 Exponential interference: ( ))0())0((exp(exp)0()1( SScfZZ fpred −−=  (Eq. S2.4c) 

We assumed that the observed density estimates, Z(1)obs, were log-normally distributed. 

Therefore, we assumed that ln(Z(1)obs) is normally distributed, with mean = ln(Z(1)pred) and a 

common standard deviation among treatments, s. This provides a likelihood function for the 

model parameters (along with the common standard deviation, s), given the data and model: 
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To find the negative log-likelihood for the parasite consumption (PC) component, ℒPC, we 

summed the negative log-likelihood (i.e., -ln(ℓPC)) calculated for each replicate tube for using the 

parasite consumption data (using Eq. S2.5). Following our assumption of independence, the joint 

negative log-likelihood for a vector of parameters, ℒJ, is the sum of the negative log-likelihoods 

for each dataset: 

 ℒJ = ℒINF + ℒPC        (Eq. S2.6) 

For each foraging-based model we determined the parameter values that minimized this total 

using the mle2 function of the bbmle package in R (R Development Core Team 2008; Bolker 



2012). Next, we obtained 95% confidence intervals for all model parameters via likelihood 

profiling (Bolker 2008; R Development Core Team 2008) We then ranked the performance of 

these models with statistics based on AIC (as described in “Competition 1” above). 

 

Additional results – maximum likelihood parameter estimates and model fits 

 Here we provide supplemental results from the model competition. We provide best-

fitting parameters for all models from Competition 1 in Table S2.1.  Further, the best fits 

obtained for the Phenomenological and Exponential interference models for Model Competition 

1 are shown in Figure S2.1. In Table S2.2, we also provide best-fit parameter estimates and 95% 

confidence intervals for the three foraging-explicit models analyzed in Model Competition 2. 

Additionally, we show the best fit obtained for the Exponential interference model in Model 

Competition 2 in Figure S2.2. 

 



 
Table S2.1. Maximum likelihood parameter estimates for all models in Competition 1 (using 

only the infection data). 

 Parameters (units) 

Model β (L spore-1 d-1) p (unitless) q (unitless) 

Density dependent 7.61 x 10-3 - - 

Phenomenological 1.88 x 10-3 -0.28 -0.37 

  

 u (host spore-1) f (L host-1 d-1) cf (L host-1) 

Constant foraging 1.27 x 10-3 1.37 x 10-2 - 

Linear interference 2.92 x 10-2 5.15 x 10-4 2.62 x 10-3 

Exponential interference 2.71 x 10-2 6.77 x 10-4 5.44 x 10-3 

 

 

 

 



 
Table S2.2. Maximum likelihood parameter estimates and 95% confidence intervals (in 

parentheses) for the foraging-explicit transmission models competed in Competition 2 (using 

both infection and parasite consumption data). 

 

 Parameters (units) 

Model u (host spore-1) f (L host-1 d-1) cf (L host-1) 

Constant  foraging 8.44 x 10-4 

(6.13 x 10-4 – 

1.14 x 10-3) 

9.20 x 10-3 

(8.06 x 10-3 – 

1.03 x 10-2) 

- 

Linear interference 1.27 x 10-3 

(9.87 x 10-4 – 

1.27 x 10-3) 

2.67 x 10-2 

(2.09 x 10-2 – 

3.26 x 10-2) 

3.55 x 10-3 

(2.50 x 10-3 – 

4.48 x 10-3) 

Exponential interference 1.17x10-3 

(1.03 x 10-3 – 

1.31 x 10-3) 

2.17 x 10-2 

(1.82 x 10-2– 

2.49 x 10-2) 

1.91 x 10-3 

(1.52 x 10-3 – 

2.19 x 10-3) 

 



 

 
Figure S2.1 Supplementary results for Competition 1 (infection data only). Best-fit predictions 

for two additional transmission models for the infection prevalence results (mean ± SE). (A) The 

phenomenological model predicts an initial decrease in infection prevalence with host density, 

but it overestimates prevalence at the highest density. Overall, this model performs very poorly 

(See Table 1). (B) The exponential interference model fits the data much better. It predicts a 

more gradual decline in prevalence with host density. This model ranked second, behind only the 

linear interference model. 

 



 
Figure S2.2 
 

 
Figure 2.2 Supplementary results for Competition 2, using infection and parasite consumption 

data. (A)  The exponential interference model fit the infection data well. In general, it captured 

the decline in infection prevalence (mean ± SE) with increasing host density. (B) 

Simultaneously, this model captured the decline in the per capita foraging rate of hosts (mean ± 

SE).
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Appendix S3: Analytical results for the fully dynamic model – Parasite invasion 

In this appendix, we formally derive the R0 criteria for each of the three fully dynamic 

epidemiological models considered in the text (Figure 3). The three models follow the same 

basic structure (Eq. 7) but vary in how transmission rate (TR) and foraging rate (FR) are 

represented (see Table 1). We calculate R0 for each model using the same method based on 

eigenvalues of the Jacobian matrix (i.e., stability analysis of the boundary, disease-free 

equilibrium). We can also derive the same R0 expressions using the next-generation matrix-based 

approach (Diekmann et al. 2010).  Using the technique from stability analysis, we first calculate 

the Jacobian matrix for the S-I-Z system, evaluated at the disease-free “boundary” equilibrium (S 

= S*
b, I = 0, Z = 0). Regardless of the details of transmission and foraging, S*

b, remains the same 

for each model. It is determined by vital rates of the host, b and d, and the strength of density 

dependence on the host’s birth rate, cb: 

 S*b = (b-d)/(bcb)        (Eq. S3.1) 

Next, we ask if that Jacobian matrix, when considered at the boundary equilibrium, is stable. If it 

is not (i.e., it has a positive eigenvalue [λj > 0]), then the parasite can invade. We can then 

rearrange these eigenvalues to determine the parasite’s basic reproductive ratio and the threshold 

host population density required for parasite invasion. 

 The first model (density dependent) considers constant transmission rate (TR = β) and no 

consumption and removal of the parasite (FR = 0).  It has a Jacobian matrix, J1: 
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All three Jacobian matrices have the same basic structure as J1 shown here, with zeros in the left 

column (at elements J21 and J31).  Matrix theory tells us then one of the eigenvalues sits in the 

upper left corner (element J11) – and this one is always negative (i.e., λ1 =  –(b – d) < 0), for all 

three models.  The other two eigenvalues come from the four element submatrix in the lower 

right portion of the Jacobian matrix.  Since that submatrix has a trace θ1 = –d – v – m, we can 

write the two remaining eigenvalues (λ2,3) as: 
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With some algebra, we can see that one of these two eigenvalues is positive when the disease-

free host density exceeds a value determined by three epidemiological traits: 

σβ
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Rearrangement of this instability (invasion) condition leads to the R0 expression for the model 

with classic density dependent transmission: 
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This equation shows how R0 increase with host density (Figure 3A-B) with slope σβ/m. 

 In the second model (constant foraging), we assume parasite (spore) removal with 

exposure.  Thus, the Jacobian matrix changes to J2:  
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Notice how the transmission rate parameter, β, has been replaced with the more mechanistic 

product uf.  Additionally, there is an additional loss term in the bottom-left corner (element J33) 

due to consumption of spores by hosts. Like in the first model, the two remaining eigenvalues 

come from the four elements in the lower right part of this matrix J2.  If that associated trace of 

J2 is θ2 = –d – v – m – f Sb
*, then the two eigenvalues are: 
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One of the eigenvalues is positive (i.e., the parasite can invade), when host density surpasses a 

minimum threshold: 

( ) ( )f
m

uf
mSb −

=
−

>
σβσ 1

*        (Eq. S3.8) 

Once we remember β = uf, we see that the threshold density for this model is always higher than 

the threshold for the density dependent transmission model (since the denominator in Eq. S3.8 is 

smaller than that in Eq. S3.4). Thus, the added source of mortality for parasite spores (i.e., 

consumption of spores by both host classes) tends to inhibit parasite invasion. Rearrangement of 

this invasion criterion leads to the R0 equation for the constant foraging model:  
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The R0 quantity still increases (linearly) with host density, but with a smaller slope (Eq. S3.9 

term in parentheses) compared with the density dependent model (Eq. S3.5).  

 The third model (linear interference) combines foraging by hosts with a decline in the 

foraging (exposure) rate with host density. The Jacobian matrix for this model (J3) becomes: 
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Note an important change in the structure of this Jacobian matrix: element J23 introduces the 

square of host density, (Sb
*)2.  This squared term will produce the unimodal R0 expression that 

arises below. Following the same procedure as before, after we define the trace of the pertinent 

submatrix as θ3 = –d – v – m – f (1 - cf Sb
*) Sb

*, the relevant eigenvalues become: 
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Some algebra reveals that one of the eigenvalues is positive when host density sits in between 

two solutions: 
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      (Eq. S3.12.b) 

Under the linear interference transmission model, two density thresholds now arise.  The smaller 

threshold (Eq. S3.12.a) is qualitatively analogous to that observed in the two simpler models 

(i.e., it must be exceeded for parasite invasion).  Some more algebra (not shown) indicates that 

this smaller threshold exceeds the single threshold under the constant foraging model (S3.8) – as 

it should, since now two components of host biology (spore consumption plus foraging 

interference) impeded transmission.  However, the larger threshold (Eq. S3.12.b) means that the 

population can become too dense for the parasite to invade. This upper threshold arises because 



strong interference at high host density can depress host – parasite contact rates enough to 

impede invasion of the parasite.  

 These threshold population sizes (equ. S3.12) produce an expression for R0 that is 

quadratic with respect to host density (Sb
*): 
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The linear term is the R0 expression for the constant foraging model (R0,2; defined in Eq. S3.9). 

But, now that inference has been introduced, the new R0 is ultimately unimodal: for biologically 

feasible parameters, R0 is concave down (i.e., d2R0/dS*
b

2 < 0). Thus, R0 in the linear interference 

model is maximized at intermediate host density.  

This R0 expression for the linear interference model prompts an additional, theoretically 

relevant point.  The R0 curve responds unimodally (Eq. S3.13) because of the introduction of 

inference biology (in element J23 in Eq. S3.10), not due to the parasite consumption biology.  For 

the sake of thoroughness, we can demonstrate this conclusion by analyzing a model with only 

interference in foraging rate but no spore consumption.  (Our data clearly contradict this 

assumption [Figure 2], but this case may apply to other systems, so it is worth considering 

beyond the math).  The Jacobian becomes: 
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Note the host-squared term again in element J23.  This variant on the model also yields a unimodal R0 

expression (after calculating the eigenvalues, as above): 
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Thus, if host interference reduces exposure to parasites, a unimodal R0 expression may arise – 

even if hosts do not effectively deplete free-living stages of the parasite.
 

 

REFERENCES 

1. Diekmann, O., Heesterbeek, J.A.P., & Roberts, M.G.  (2010). The construction of next-

generation matrices for compartmental epidemic models. J. R. Soc. Interface. 7, 873-885. 


	Archive 2013A
	Archive 2013B
	Archive 2013C

